This article was downloaded by: On: *19 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymeric Materials

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713647664

HIGH SOLIDS POLYURETHANE COATINGS FROM CASTOR-OIL-BASED POLYESTER-POLYOLS

Keyur Somani^a; S. Kansara^a; R. Parmar^b; N. Patel^c

^a Department of Chemistry, Vadodara, India ^b Department of Industrial Chemisrty, ISTAR, V.V.Nagar, India ^c Department of Chemistry, V.V.Nagar, India

Online publication date: 16 August 2010

To cite this Article Somani, Keyur , Kansara, S. , Parmar, R. and Patel, N.(2004) 'HIGH SOLIDS POLYURETHANE COATINGS FROM CASTOR-OIL-BASED POLYESTER-POLYOLS', International Journal of Polymeric Materials, 53: 3, 283 – 293

To link to this Article: DOI: 10.1080/00914030490267618 URL: http://dx.doi.org/10.1080/00914030490267618

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HIGH SOLIDS POLYURETHANE COATINGS FROM CASTOR-OIL-BASED POLYESTER-POLYOLS

Keyur Somani

S. Kansara

Department of Chemistry, Maharaja Sayajirao University, Vadodara, India

R. Parmar

Department of Industrial Chemisrty, ISTAR, S.P. University, V.V.Nagar, India

N. Patel

Department of Chemistry, S.P. University, V.V.Nagar, India

High solids polyurethane (PU) coating formulations were developed by reacting three different castor-oil-based polyester-polyols with aromatic as well as aliphatic isocyanate adducts in different NCO/OH ratios. Structure of polyurethane resins was confirmed by FTIR spectroscopy. The molecular weight between two crosslinks (Mc) and solubility parameter of the samples (polymer films) were determined by a swelling method. The polyurethane resins were coated on test panels and tested for their flexibility, scratch hardness, cross-hatch adhesion, impact, pencil hardness and solvent resistance as per standards. The effect of catalyst, structure of isocyanate and flexibility of polyols on the resulting polyurethanes was evaluated. Thermal stability of these polymers was determined by thermogravimetric analysis (TGA).

Keywords: high solid coatings, castor oil, polyurethane coating, polyester-polyol

INTRODUCTION

Over the last few years, reduction of organic solvents usage [1] has been a matter of great importance for paints and their application

Received 21 February 2002; in final form 5 March 2002.

We are thankful to Prof. A. K. Rakshit, Head, Department of Chemistry, Maharaja Sayajirao University of Baroda, Vadodara, for providing departmental facilities.

Address correspondence to Keyur Somani, Department of Chemistry, Maharaja Sayajirao University, Vadodara-390 002, India. E-mail: sskansara@rediffmail.com

technologies because of the restrictions imposed by environmental pollution agencies and users all over the world. This has caused a shift in attention from conventional organic solvent-based coatings to water-borne powder coating, radiation-cured coating and high solids coatings. In recent years, high solids coatings are gaining importance to comply with keeping the environment clean. Among these, poly-urethanes have good mechanical and chemical properties. Castor -oil-based polyurethane has been extensively studied as a coating and in network synthesis [2–5]. Varying a chain length of prepolymer with low viscosity and 100 percent solids content varies the crosslink density of network over a wide range. In general, coating with 70% or above solids can be considered as high solids coating [6]. Castor -oil-based polyols have great potential to be good reactive diluents.

In the present study, an attempt is made to prepare the high solids PU coatings from castor—oil—based polyols. Castor oil is a triglyceride of fatty acids, whose main constituent is ricinoleic acid, extracted from Ricinus Communis [7–9], and is frequently utilized as a polyol in the synthesis of polyurethanes [10]. Polyurethanes made from a variety of drying oils have been known for many years [11]. Low viscosity castor oil derivatives were developed to improve flexibility and impact strength. The structure of castor oil is shown in Figure 1.

EXPERIMENTAL

Materials and Methods

Ricinoleic acid received from Jayant Oil Mills, Vadodara, India, was used after vacuum drying. Ethylene glycol (EG), Diethylene glycol (DEG), Triethylene glycol (TEG) were received from Merck, USA and used as received. Dibutyl tin dilaurate (DBTDL) to be used as a catalyst was procured from Fluka and used without further purification. Aromatic and aliphatic isocyanate adducts were received from Grand Polycoats Co. Pvt. Ltd. Padra, Vadodara, and were characterized for

$$\begin{array}{c} O \\ || \\ CH_2-O-C-R \\ | \\ O \\ CH-O-C-R \\ | \\ O \\ || \\ CH-O-C-R \\ | \\ O \\ || \\ CH_7O-C-R \\ | \\ O \\ CH_7O-C-R \end{array} \qquad R= -- [CH_2]_7CH=CH-CH_2 -CH -[CH_2]_5 CH_3 \\ | \\ O \\ OH \\ OH \end{array}$$

FIGURE 1 Structure of castor oil.

Type of isocyanate adduct	Percent free isocyanate content	NCO equivalent weight	(%) Solid	Specific gravity 30°C	Viscosity 30℃ by FC- B IV secs.
Aromatic	12.5	336	75	1.02	210
Aliphatic	16.5	255	75	1.05	175

TABLE 1 Physical Properties of Isocyanate Adducts

their physical properties shown in Table 1. Solvents xylene, methyl ethyl ketone were received from Suvidhinath Laboratory, Vadodara, and used after distillation and dried with molecular sieves (4\AA) .

Preparation of Polyester–Polyols

Polyester-polyols were synthesized at 210-230°C in a round-bottom flask with thermocouple and nitrogen purge by dry process (fusion process). The polyester-polyols were synthesized by reacting ricinoleic acid with EG, DEG, and TEG, respectively. Conversion of the polyester-polyols was monitored by determining acid number with respect to time. The compositions and physical properties of polyols made as above are given in Table 2. Polyol A, Polyol B and Polyol C represent the polyester-polyol prepared reacting ricinoleic acid with EG, DEG, and TEG, respectively.

Preparation of Polyurethane Coatings

Various sets of polyurethane coatings were prepared from polyester-polyols by adding the required amount of aromatic isocyanate

Designations of polyols	Hydroxyl value mg. KOH/gm	•Hydroxyl equivalent weight gm	Viscosity at 30℃ FC B-IV secs.	Percentage non volatile matter (%NVM) @
Polyol A	306	183	124	99.1
Polyol B	265	210	137	99.5
Polyol C	249	225	168	99.30

TABLE 2 Compositions and Physical Properties of Castor-Oil-Based Polyester-Polyols

• Hydroxyl equivalent weight = 56100/OH value

@ %age N.V.M.—Non-volatile matter, determined after keeping at 120 $^\circ\!\mathrm{C}$ for 2h under vacuum

adducts, aliphatic isocyanate adducts, methyl ethyl ketone(MEK), and xylene as per the compositions shown in the Table 3. These coatings were applied on test panels and were then allowed to dry at room temperature for seven days to ensure complete curing.

Characterizations of Polyurethane Coatings

The polyurethane coatings were characterized for various physical properties such as viscosity, pot life and drying time as per BIS method [12]. The coating films were characterized for properties like adhesion, flexibility, hardness, impact resistance, chemical resistance and solvent resistance by standard procedures. The coatings were also characterized by IR spectroscopy. The films were characterized for their swelling behavior. Their thermal properties were studied by TGA.

RESULTS AND DISCUSSION

Viscosity and Pot Life

The viscosity data (Table 3) of the polyurethane coatings reveal that the viscosity of polyurethane coating compositions made from polyol A, B, and C, respectively, were quite low as compared to conventional polyurethane coatings having similar solids content. For a given NCO/OH ratio, the viscosity of the coating based on polyol A is lower than the remaining compositions based on polyols B and C. This could be attributed to the lower molecular weight of polyol A. Polyurethane coating composition with polyol A as well as the composition with catalyst dibutyl tin dilaurate (DBTDL) showed shorter pot lives compared to other compositions. This is a typical behavior of systems with higher number of functional groups.

Drying Properties

Times of surface dry, hard dry and tack free of various sets are reported in Table 3 as they give indications of drying time of the film after its application. The results show that polyol A dried faster than polyol C for a given isocyanate adduct and NCO/OH ratio. The coating compositions with aromatic isocyanate adduct as curing agent showed faster drying times, may be because of higher reactivity of their NCO groups with OH groups. The drying times of the coating films are also shortened by catalyst.

2011
January
19
09:31
At:
Downloaded

Hard drying N/ON/0 N/0 0/0 0/N 0/N 0/N N/0 N/0 N/0 Drying properties drying hrs. Tack free 2.52.52.52.5ŝ ကက 0000 2 2 S 20 N. 4 4 N drying min. Surface 25 35 35 20 $\begin{array}{c} 40\\ 45\\ 50 \end{array}$ 15 15 10 15 Pot life at $30^{\circ}C$ hrs. 5.55.55.04.54.54.54.03.53.03.0 6.04.54.57.0 6.56.0 6.05.53.5 secs. at 30°C Viscosity[®] by FC B-IV 42 57 25 38 $\frac{49}{41}$ $\begin{array}{c} 664 \\ 622 \\ 652 \\ 652 \\ 652 \\ 779 \\ 779 \\ 779 \\ 721 \\$ $21 \\ 27 \\ 34 \\ 31 \\ 31$ NCO/OH Ratio 1:3 1:7 -1:3 1:7 -1:3 1:7 -1:31:7 1:3 1:3 adduct gms. isocyanate Amount of 54.767.273.059.565.858.2 64.470.3 64.870.575.761.459.565.858.261.1 67.453.153.1Amount of polyol gms. 24.345.341.835.629.7 35.229.538.932.838.6 32.627.046.940.534.246.940.534.241.8isocyanate Type of adduct ARO ARO ARO ARO ARO ARO ARO ARO ARO ALI composition code Designation of coating AAL1, BAR2 AAL2 AAL3 AAR2 AAR3 BAL2 **BAL3 BAR1 BAR3** CAL2 CAL3 CAR1 CAR2 CAR3 AAL1 AAR1 BAL1 CAL1

TABLE 3 Composition and Physical Properties of Polyurethane Coatings

ALI-Aliphatic Isocyanate adduct ARO-Aromatic Isocyanate adduct AAL1c-The composition with 0.05% I

AAL1c–The composition with 0.05% Dibutyl tin di laurate (DBTDL) catalyst $^{@}$ 75% solids in xylene: MEK, 1:1 by weight, O/N Over Night

Mechanical Properties

Flexibility Test and Adhesion Test

Flexibilities of all the systems were tested on tin panels by bending 1/8'' mandrel by ASTM D 622. The results are shown in Table 4.

Adhesion of coated materials was tested by crosshatch, according to ASTM D 3359 method. The test coatings were cut through to the substrate using a sharp razor blade to give parallel lines 2 mm apart, forming a 10×10 block grid. The test surface was then brushed lightly to remove loose particles. Adhesive tape (Scotch brand 810 Magic Tape or 3 M adhesive tape) was pressed onto the scribed area and then pulled off rapidly at 180° angle within 60 seconds. The scribed area was inspected visually with an illuminated magnifer to determine percentage of coating removed.

Results show that all panels have almost 100% adhesion in all the systems, i.e. film was not removed from the coated panels. This indicates that the system has good adhesion properties.

Composition code	Adhesion (cross-hatch)	Flexibility 1/8″ bending mendrel	Scratch hardness gms.	Impact resistance lb. in.	Pencil hardness [@]
AAL1	Р	Р	1500	300	2H
AAL2	Р	Р	2000	100	2H
AAL3	Р	F	2000	100	$1\mathrm{H}$
AAR1	Р	Р	2500	200	3H
AAR2	Р	F	3000	50	3H
AAR3	\mathbf{F}	F	3500	50	$4\mathrm{H}$
BAL1	Р	Р	2000	300	1H
BAL2	Р	Р	2000	200	$1\mathrm{H}$
BAL3	Р	F	2500	200	$1\mathrm{H}$
BAR1	Р	Р	2500	200	2H
BAR2	Р	Р	3500	50	$4\mathrm{H}$
BAR3	\mathbf{F}	\mathbf{F}	3500	50	5H
CAL1	Р	Р	2500	300	$1\mathrm{H}$
CAL2	Р	Р	3000	200	1H
CAL3	Р	Р	3000	200	1H
CAR1	Р	Р	2500	200	2H
CAR2	Р	Р	3500	50	$4\mathrm{H}$
CAR3	Р	\mathbf{F}	3500	50	$5\mathrm{H}$

TABLE 4 Adhesion, Scratch Hardness, Flexibility, Impact Resistance andPencil Hardness of the Coating Films

[@] 6H>5H>4H>3H>2H>1H>H>HB>1HB>2HB>3HB>4HB>5HB>6HB

Impact Resistance and Scratch Hardness

Impact resistance of dried film of all the systems was tested on mildsteel panels by a tabular impact tester. In this method, an indenter of 0.5 kg, was dropped from a certain height until the film cracked. The maximum height of instrument is 300 cm. The results of this test are shown in Table 4.

The results show that when the indenter hit panels having higher NCO/OH ratio, particularly from maximum height, some signs of crack and film detachment were observed. Comparison of the system containing aliphatic and aromatic isocyanate adducts, particularly at higher NCO/OH ratio (1 and 1.3), shows low impact strength, which may be due to the rigidity of the aromatic structure of the adduct.

Scratch hardness of dried films of all the systems was measured on panels with a mechanically operated "Sheen" scratch hardness. The results infer good scratch resistance. This may be due to high crosslink density.

Pencil Hardness

A coated panel was placed on a flat horizontal surface and a pencil was held at an angle 45° to the film. The pencil was pushed away from the operator in a 1/4'' stroke. This process was started with the hardest level pencil and was repeated with progressively softer pencils until the pencil did not cut the film. The pencil, which did not cut the film, denotes its hardness. The hardness of test formulations, measured at 27° C, is reported in Table 4.

The results indicate that irrespective of the type of glycol at given NCO/OH ratio, the aromatic system shows better pencil hardness compared to the aliphatic system, and improves as the NCO/OH ratio increases in the aromatic system. This may be due to increase in the rigidity provided by a more crosslinked structure.

Water and Chemical Resistance

All of the experimental polyurethane coating compositions showed no effect on the films when immersed in water for specified time period. It clearly reflects the characteristic water resistance property of the polyurethane coatings. The acid and alkali resistance of the polyurethane coatings was found to be good. However, coating compositions with higher NCO/OH ratio showed better acid and alkali resistance due to higher crosslink density. The results are shown in Table 5.

	0		
Coating compositions code	$\begin{array}{c} \text{Acid} \\ \text{resistance} \\ 5\% \ \text{H}_2\text{SO}_4 \\ \text{solution} \end{array}$	Alkali resistance 5% NaOH solution	Corrosion resistance 10% NaCl solution
AAL1	2	4	Р
AAL2	3	5	Р
AAL3	5	3	Р
AAR1	4	5	Р
AAR2	5	2	Р
AAR3	5	3	Р
BAL1	1	2	Р
BAL2	2	5	Р
BAL3	3	5	Р
BAR1	4	2	Р
BAR2	4	3	Р
BAR3	5	2	Р
CAL1	1	4	Р
CAL2	4	5	Р
CAL3	4	5	Р
CAR1	2	4	Р
CAR2	4	5	Р
CAR3	5	5	Р

TABLE 5 Chemical Resistance and CorrosionResistance of the Coating Films

0-film completely removed

1-film cracked and partially removed

2-film partially cracked

3–loss of gloss

4-slight loss of gloss

5-film practically unaffected

P-pass

F-fail

Swelling Measurements

Swelling of polyurethane A (AAR1), B (BAR1) and C (CAR1) with NCO/OH ratio 1, aromatic adduct were studied. Films of each polymer network of known dimensions were cut and immersed in solvents with increasing order of solubility parameter δ from 8.2 to 14.5 $(cal/cm^3)^{1/2}$.

The solvents used were cyclohexane (8.2), xylene (8.8), ethyl acetate (9.12), dioxane (9.8), n-butanol (11.4), ethanol (12.7) and methanol (14.8). The swelling experiments yielded data regarding volume equilibrium, and degree of swelling (Q). The molecular weight between crosslink points was calculated. The swelling curve is shown in Figure 2.

Solubility Parameter

FIGURE 2 Plot of volume equilibrium of solvents (Q_t) vs. solubility parameter of solvents (δ) .

The swelling equilibrium (Q), which is reciprocal to the volume fraction of polymeric film in swollen state (V_p), was calculated from the swelling data using the relation Q = 1/Vp and was plotted against δ of various solvents.

The average molecular weight between two crosslink points, which is a direct measure of crosslink density, was measured from the well-known equation of Flory and Rehner [13], the Mc increases with increase in the chain length of polyol. For a given crosslink density, the sorption decreases with an increase in the chain length of polyol. Molecular weights of polyurethanes AAR1, BAR1, CAR1 are shown in Table 6.

IR Spectra

In the spectra of polymeric film, the characteristic carbonyl stretching of urethane linkage was observed at $1735 \,\mathrm{cm}^{-1}$. The absorption resulting from N-H stretching and bending vibrations was observed at $3330 \,\mathrm{cm}^{-1}$ and $1560 \,\mathrm{cm}^{-1}$ respectively. The double bond in the polyols moieties was observed as a medium intensity peak at $1635 \,\mathrm{cm}^{-1}$. IR spectra of polyol B and polyurethane B(BAR1) were submitted to the editor but are not reproduced here.

Polyurethenes film	Molecular weight between two crosslinks points Mc
PU A(AAR1)	749
PU B(BAR1)	1124
PU C(CAR1)	2473

TABLE 6 Molecular Weight Between Two Crosslink Points of PU

FIGURE 3 Thermogram of PU A (AAR1), PU B (BAR1), and PU C (CAR1).

Thermal Analysis

From TGA (in Figure 3) we can conclude that two stage degradations might have occurred, breaking of urethane link starts at ~ 260°C leading to the formation of CO₂, alcohols, amines, aldehydes, CO, etc. [14–15]. The second stage, which is not quite distinct, may be due to the polyol decomposition that occurred at ~ 450°C. Since polyols used in this study are based on castor oil, the main chain cleavage may result in the formation of 10-undecanoic acid and heptanal as evident by the thermal degradation of ricinoleic acid [16], which is the main constituent of castor oil. The same two-stage decomposition behavior was observed in all our polyurethanes. The activation energy of these polymers was evaluated using the wellknown Broido's method. Initial Decomposition Temperature (IDT) and activation energy of polyurethanes are shown in Table 7.

CONCLUSIONS

High solids polyurethane coatings were made successfully from castor-oil-based polyols. Various polyurethane coating compositions with different ratios of NCO/OH, type of polyol, type and amount of

System	$IDT^{\circ}C$	Ea (KJ/mole)
PU A (AAR1)	290	71.32
PU B (BAR1)	300	79.40
PU C (CAR1)	310	94.0

TABLE 7 Activation Energy of Polyurethane

isocyanate adduct were studied for their physical and film performance properties. The study reveals that: (i) the presence of catalyst shortens the drying times of polyurethane coatings; (ii) lower amount of curing agent gives better flexibility and impact resistance, higher amount of curing agents gives better scratch hardness, chemical and water resistance; (iii) the coating films containing aliphatic isocyanate curing agents gave better flexibility and impact resistance than the coatings containing aromatic adduct.

From the study we can conclude that the high solids polyurethane coating composition with castor–oil–based polyols and Aliphatic Isocyanate adduct (NCO/OH 1.3) and the one with Aromatic Isocyanate Adduct (NCO/OH 1) gave optimum film performance.

REFERENCES

- [1] Dekker, G. H. (1999). Paintindia, 49(9), 117.
- [2] Saunders, J. H. and Frisch, K. C. (1962). Polyurethane Chemisrty and Technology, Interscience, New York.
- [3] Patton, T. C., Ehrlich, A. and Smith, M. K. (1960). Rubber Age, 80, 639.
- [4] Sperling, L. H., Thomas, D. A., Loreny, E. J. and Nagel, E. J. (1975). J. Appl. Polym. Sci., 19, 2225.
- [5] Sperling, L. H. (1974). Ed. Recent Advances in Polymer Blends, Crafts and Blocks, Plenum, New York.
- [6] Singh, Dhirendra (1993). Paint India, 49(9), 47.
- [7] Othmer, Kirk (1979). Encyclopedia of Chemical Technology, 4th edition, vol. 5, John Wiley and Sons, Inc., New York.
- [8] Naughton, F. C., Duneczky, F., Iwenson, C. R., Kroplinski, T. and Copperman, M. A. (1979). in Kirk-Othmer *Encyclopedia of Chemical Technology*, vol. 5, John Wiley and Sons, New York.
- [9] Johnson, R. W. and Iritz, E. (1989). Fatty Acids in Industries Process Properties, Derivatives and Applications, Marcel Dekker, New York, p. 13.
- [10] Saxena, P. K., Shrinivasan, S. R., Hrouz, J. and Ilarsky, M. (1992). J. Appl. Polym. Sci., 42, 1343.
- [11] Schnider, W. J. and Gast, L. E. (1969). J. American Oil Chem. Society, 114.
- [12] Indian Standard Specification: Methods of Sampling and Test for Resins for Paints: IS 354(1981).
- [13] Flory, P. and Rehner, J. (1943). J. Chem. Phy., 11, 521.
- [14] Jellinek, H. H. G., Dhankle, S. R. (1983). Degradations and Stability of Polymer, Vol. 1, Ch. 2, Elsevier, New York, p. 91.
- [15] David, D. J., Staley, H. B. (1974). Analytical Chemistry of Polyurethanes, Vol.XVI, Part III, High Polymers, p. 365.
- [16] Saunders, J. H., Frisch, K. C. (1963). Polyurethane Chemistry and Technology, Part 1, Chemistry of High Polymers, Vol.XVI, Interscience Publications, Ch 2, p. 51.